高级搜索  |  搜索帮助
最近的浏览历史
浏览此书的还浏览过
购买此书的人还购买过
书  名:时域有限差分方法及编程技巧
  • 作  者: (美)John B. Schneider 著 ,余文华、李文兴、张朝柱 译
  • 出版时间: 2015-03-01
  • 出 版 社: 清华大学出版社
  • 字  数: 513 千字
  • 印  次: 1-1
  • 印  张: 20.75
  • 开  本: 16开
  • ISBN: 9787302377719
  • 装  帧: 平装
  • 定  价:¥49.00
电子书价:¥34.30 折扣:70折 节省:¥14.70 vip价:¥34.30 电子书大小:5.93M
配套资源下载:
  • 名称
  • 说明
  • 权限
  • 文件大小
  • 点击图标下载
  • 图书样章
  • 所有用户
  • 256K
共有商品评论0条 查看评论摘要
内容简介
  《时域有限差分方法及编程技巧》是一部详细介绍时域有限差分方法、编程技巧和应用的著作。该书深入浅出地介绍了时域有限差分基本理论、关键技术、编程技巧以及工程应用。该书配有一维、二维和三维时域有限差分原程序并详细地解释了编程方法和技巧。
该书非常适合研究生和年轻教师用作计算电磁学教材以及科学研究或者工程应用的参考书。
前言
  译者序
华盛顿州立大学 John Schneider教授的《 Understanding Finite Di.erence Time Domain Method》是一本非常难得的计算电磁学入门的优秀教材。该书除了由简到繁系统地介绍时域有限差分理论和方法外,从软件工程的角度结合理论和方法,指导学生一步一步编写一个优秀的时域有限差分应用程序,使学生得到了时域有限差分方法和软件工程两方面的学习和训练。该书经过在哈尔滨工程大学电磁场与微波专业的教学与实践,得到了学生广泛好评,取得了良好的教学效果。
  参加该书翻译的有哈尔滨工程大学余文华、李文兴、张朝柱、段瀚林、孙照清、李千、卓庆坤、王美玉、张文、刘鑫博、郭晓亮、田春胜、赵月明、刘玉敬、张兰超、孔媛媛、曹小东。该书由国防科技大学刘培国教授校对。
  该书适合作为电磁场与微波技术专业高年级本科生和研究生的教材或参考书,也可以作为年轻教师和工程师的参考书。该书为哈尔滨工程大学研究生规划教材。
  余文华于哈尔滨工程大学

致中国读者
This book grew out of a set of notes I prepared for a graduate-level course on the .nite-di.erence time-domain (FDTD) method I taught at Washington State University. The notes were intended to supplement the textbook I used for the course, Computational Electrodynamics: The Finite-Di.erence Time-Domain Method by Ta.ove and Hagness (3rd ed., Artech House, 2005). The goal of the course was to provide students not only with a thorough understanding of the FDTD method, but also to ensure they were able to implement functional FDTD code and to tackle meaningful, challenging, and interesting problems. (For example, one of the homework assignments in the class was to duplicate the patch antenna modeling in David Sheen’s groundbreaking 1991 MIT Ph.D. dissertation.) Each time I taught the course I added to the notes to the point that students believed the assigned textbook should be considered optional, i.e., the material I provided stood on its own as a complete text in and of itself. I have shared the English version of the course material widely and have been .attered by the response. From the feedback I have received, the material has served individuals interested in learning the FDTD method and writing functional code extremely well.
Although this material was used in a graduate-level course, undergraduate students often took the course. They only needed to be su.ciently motivated, to have had an introductory course in electromagnetics and, hopefully, to have had some programming experience. I truly feel that by understanding the FDTD method one can better understand Maxwell’s equations and electromagnetics in the continuous world. Thus, I can easily envision this material servingas the textbook for an upper-division undergraduate course.
The FDTD method is computationally expensive. Many interesting simulations can be quickly and easily realized in languages such at MATLAB or Java, but to get the most from the technique it is necessary to code in a computationally e.cient language such as FORTRAN or
C. In this book, C is the language of choice. Although C may be considered arcane or archaic by some, as used here it is quite accessible—readers need not have much, or perhaps even any, familiarity with C. The FDTD method, at its core, is an extremely simple technique and if you are able to implement a FOR-loop, you have almost all the coding skills you need to do meaningful simulations (a slight exaggeration, perhaps, but as you will see, only a slight one).
Finally, the Chinese edition of this material would not exist without the work of Prof. Wenhua Yu and his students. Thus, I would like to express my deep appreciation to Prof. Yu for reaching out to me and to all those who made the translation of this material possible.
John Brand Schneider Washington State University
目录
第 1章数字伪像 ............................ 1
1.1引言 ............................. 1
1.2有限精确度 .......................... 1
1.3符号处理 ........................... 5
第 2章电磁学的简要回顾 ........................ 6
2.1引言 ............................. 6
2.2库仑定律和电场强度 ....................... 6
2.3电位移矢量 .......................... 7
2.4静电场 ............................ 9
2.5梯度、散度和旋度 ........................ 10
2.6拉普拉斯运算 ......................... 12
2.7高斯定理和斯托克斯定理 ..................... 15
2.8电场边界条件 ......................... 15
2.9电导率和理想电导体 ....................... 16
2.10磁场 ............................. 16
2.11磁场边界条件 ......................... 18
2.12静态场简述 .......................... 18
2.13时域场 ............................ 18
2.14时变场总结 .......................... 19
2.15无源区的波动方程 ....................... 20
2.16一维波动方程的解决方案 .................... 20
第 3章一维时域有限差分 (FDTD)法简介 ................ 22
3.1引言 ............................. 22
3.2 Yee算法 ............................ 23
3.3一维递推方程 ......................... 23
3.4一维 FDTD仿真的计算机实现 .................. 27
3.5基本仿真 ........................... 29
3.6一维 PMC边界条件 ....................... 31
3.7场的记录 ........................... 32
3.8附加源 ............................ 35
3.9边界条件 ........................... 38
3.10总场/散射场边界条件 ...................... 39
3.11非均匀媒质 .......................... 44
3.12色散媒质 ........................... 49
时域有限差分方法及编程技巧
第 4章 FDTD程序优化 ........................ 56
4.1引言 ............................. 56
4.2数组和动态内存分配 ....................... 56
4.3宏 .............................. 57
4.4结构体 ............................ 60
4.5改进一 ............................ 65
4.6模块化设计和函数初始化 ..................... 69
4.7改进二 ............................ 73
4.8编译模块化代码 ......................... 78
4.9改进三 ............................ 79
第 5章推广 FDTD仿真至所有频率 ................... 88
5.1引言 ............................. 88
5.2源 .............................. 88
5.2.1高斯脉冲 ......................... 88
5.2.2谐波源 .......................... 88
5.2.3 Ricker小波 ........................ 90
5.3映射频率至离散傅里叶变换 .................... 91
5.4运行离散傅里叶变换( DFT) ................... 93
5.5实信号与 DFT信号 ....................... 95
5.6两个时域采样点的振幅和相位 ................... 98
5.7电导率 ............................ 100
5.8实例:获取平面交界面的透射系数 ................. 104
5.8.1穿过平面交界面的透射(连续空间) .............. 104
5.8.2使用 FDTD测量透射系数 .................. 106
第 6章基于微分方程的吸收边界条件 ................... 113
6.1引言 ............................. 113
6.2传播方程 ........................... 113
6.3截断网格 ........................... 114
6.4一阶吸收边界条件的实现 ..................... 116
6.5用算子符号表示吸收边界条件 ................... 120
6.6二阶吸收边界条件 ........................ 121
6.7二阶吸收边界条件的实现 ..................... 123
第 7章色散、阻抗、反射和透射 ..................... 126
7.1引言 ............................. 126
7.2连续空间中的色散 ........................ 126
7.3 FDTD方法的谐波表示 ...................... 127
7.4 FDTD的网格色散 ........................ 129
目录 VII
7.5数值阻抗 ........................... 132
7.6 FDTD解析反射系数和透射系数 .................. 133
7.7理想电导体的反射 ........................ 136
7.8交界面与电场节点重合 ...................... 138
第 8章二维 FDTD仿真 ........................ 142
8.1引言 ............................. 142
8.2多维数组 ........................... 142
8.3二维:TMz极化 ........................ 145
8.4 TMz实例 ........................... 148
8.5 TMz极化波的 TFSF边界 .................... 160
8.6 TMz TFSF边界举例 ....................... 163
8.7 TEz极化 ........................... 173
8.8 TMz和 TMz仿真中的 PEC .................... 177
8.9 TEz举例 ........................... 178
第 9章三维 FDTD .......................... 191
9.1引言 ............................. 191
9.2 C语言中的三维数组 ....................... 191
9.3支配方程和三维网格 ....................... 193
9.4三维程序实例 ......................... 199
9.5 TFSF边界 ........................... 213
9.6 TFSF示范 ........................... 218
9.7非等空间步长 ......................... 225
第 10章色散材料 ........................... 229
10.1引言 ............................. 229
10.2本构关系和色散媒质 ...................... 229
10.2.1 Drude材料 ....................... 231
10.2.2 Lorentz材料 ...................... 232
10.2.3 Debye材料 ....................... 232
10.3 Debye材料运用辅助差分方程方法( ADE) ............. 233
10.4 Drude材料运用辅助差分方程方法( ADE) ............. 235
10.5磁色散材料 .......................... 237
10.6分段线性递归卷积 ....................... 239
10.7 Debye材料的分段线性递归卷积方法 ................ 242
第 11章完全匹配层 (PML)....................... 245
11.1引言 ............................. 245
11.2有耗层,一维 ......................... 245
时域有限差分方法及编程技巧
11.3有耗层,二维 ......................... 247
11.4分裂场 PML .......................... 249
11.5非分裂场 PML ......................... 252
11.6非分裂场 PML的 FDTD实现 .................. 255
第 12章声学 FDTD仿真 ....................... 259
12.1引言 ............................. 259
12.2 FDTD支配方程 ........................ 260
12.3二维 FDTD实现 ........................ 263
第 13章并行处理 ........................... 265
13.1线程 ............................. 265
13.2线程举例 ........................... 266
13.3消息传递接口 ......................... 272
13.4 Open MPI基础知识 ...................... 273
13.5等级和大小 .......................... 275
13.6进程间的通信 ......................... 276
第 14章近远场变换 .......................... 281
14.1引言 ............................. 281
14.2等效原理 ........................... 281
14.3矢量位 ............................ 282
14.4远区的电场 .......................... 288
14.5复化辛普森积分 ........................ 291
14.6电磁场的排列:几何平均法 ................... 291
14.7几何平均法实现近远场变换 ................... 294
14.7.1双缝辐射 ........................ 294
14.7.2圆柱体散射 ....................... 296
14.7.3球体前向强散射 ..................... 298附录 A四阶中心差分的构造 ....................... 302附录 B产生瀑布图和动画 ........................ 303附录 C二维数据的渲染及动画 ...................... 306附录 D符号 ............................. 308附录 E PostScript简介 ........................ 309
E.1引言 ............................. 309
E.2 PostScript文件 ......................... 309
E.3 PostScript基本命令 ....................... 310
索引 .................................. 319
Copyright(C)清华大学出版社有限公司,All Rights Reserved 京ICP备10035462号 联系我们